Isoperimetric inequalities for the heat potential operator

Tynysbek Sh Kal’menov, Aidyn Kassymov, Durvudkhan Suragan

Research output: Contribution to journalArticle

Abstract

In this paper we prove that the circular cylinder is a maximizer of the Schatten p-norm of heat potential operator among all Euclidean cylindric domains of a given measure. We also give analogues of a Rayleigh-Faber-Krahn and a Hong-Krahn-Szegö type inequalities.

Original languageEnglish
Pages (from-to)903-910
Number of pages8
JournalFilomat
Volume32
Issue number3
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

Potential Operators
Isoperimetric Inequality
Circular Cylinder
Rayleigh
Euclidean
Heat
Analogue
Norm

Keywords

  • Heat potential operator
  • Hong-Krahn-Szegö inequality
  • Rayleigh-Faber-Krahn inequality
  • S-number
  • Schatten p-norm

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Isoperimetric inequalities for the heat potential operator. / Kal’menov, Tynysbek Sh; Kassymov, Aidyn; Suragan, Durvudkhan.

In: Filomat, Vol. 32, No. 3, 01.01.2018, p. 903-910.

Research output: Contribution to journalArticle

Kal’menov, Tynysbek Sh ; Kassymov, Aidyn ; Suragan, Durvudkhan. / Isoperimetric inequalities for the heat potential operator. In: Filomat. 2018 ; Vol. 32, No. 3. pp. 903-910.
@article{cc41166ebad24de38db2b38d552f8dd6,
title = "Isoperimetric inequalities for the heat potential operator",
abstract = "In this paper we prove that the circular cylinder is a maximizer of the Schatten p-norm of heat potential operator among all Euclidean cylindric domains of a given measure. We also give analogues of a Rayleigh-Faber-Krahn and a Hong-Krahn-Szeg{\"o} type inequalities.",
keywords = "Heat potential operator, Hong-Krahn-Szeg{\"o} inequality, Rayleigh-Faber-Krahn inequality, S-number, Schatten p-norm",
author = "Kal’menov, {Tynysbek Sh} and Aidyn Kassymov and Durvudkhan Suragan",
year = "2018",
month = "1",
day = "1",
doi = "10.2298/FIL1803903K",
language = "English",
volume = "32",
pages = "903--910",
journal = "Filomat",
issn = "0354-5180",
publisher = "Universitet of Nis",
number = "3",

}

TY - JOUR

T1 - Isoperimetric inequalities for the heat potential operator

AU - Kal’menov, Tynysbek Sh

AU - Kassymov, Aidyn

AU - Suragan, Durvudkhan

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In this paper we prove that the circular cylinder is a maximizer of the Schatten p-norm of heat potential operator among all Euclidean cylindric domains of a given measure. We also give analogues of a Rayleigh-Faber-Krahn and a Hong-Krahn-Szegö type inequalities.

AB - In this paper we prove that the circular cylinder is a maximizer of the Schatten p-norm of heat potential operator among all Euclidean cylindric domains of a given measure. We also give analogues of a Rayleigh-Faber-Krahn and a Hong-Krahn-Szegö type inequalities.

KW - Heat potential operator

KW - Hong-Krahn-Szegö inequality

KW - Rayleigh-Faber-Krahn inequality

KW - S-number

KW - Schatten p-norm

UR - http://www.scopus.com/inward/record.url?scp=85048017767&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85048017767&partnerID=8YFLogxK

U2 - 10.2298/FIL1803903K

DO - 10.2298/FIL1803903K

M3 - Article

VL - 32

SP - 903

EP - 910

JO - Filomat

JF - Filomat

SN - 0354-5180

IS - 3

ER -