Largest extension of a finite convex geometry

K. V. Adaricheva, J. B. Nation

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We present a new embedding of a finite join-semidistributive lattice into a finite atomistic join-semidistributive lattice. This embedding turns out to be the largest extension, when applied to a finite convex geometry.

Original languageEnglish
Pages (from-to)185-195
Number of pages11
JournalAlgebra Universalis
Volume52
Issue number2-3
DOIs
Publication statusPublished - Jan 2005
Externally publishedYes

Fingerprint

Convex Geometry
Finite Geometry
Join

Keywords

  • Anti-exchange property
  • Atomistic
  • Convex geometry
  • Join-semidistributive
  • Lattice

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Largest extension of a finite convex geometry. / Adaricheva, K. V.; Nation, J. B.

In: Algebra Universalis, Vol. 52, No. 2-3, 01.2005, p. 185-195.

Research output: Contribution to journalArticle

Adaricheva, KV & Nation, JB 2005, 'Largest extension of a finite convex geometry', Algebra Universalis, vol. 52, no. 2-3, pp. 185-195. https://doi.org/10.1007/s00012-004-1844-6
Adaricheva, K. V. ; Nation, J. B. / Largest extension of a finite convex geometry. In: Algebra Universalis. 2005 ; Vol. 52, No. 2-3. pp. 185-195.
@article{2cdd6a940f1545bc80f73f5c3e60d52c,
title = "Largest extension of a finite convex geometry",
abstract = "We present a new embedding of a finite join-semidistributive lattice into a finite atomistic join-semidistributive lattice. This embedding turns out to be the largest extension, when applied to a finite convex geometry.",
keywords = "Anti-exchange property, Atomistic, Convex geometry, Join-semidistributive, Lattice",
author = "Adaricheva, {K. V.} and Nation, {J. B.}",
year = "2005",
month = "1",
doi = "10.1007/s00012-004-1844-6",
language = "English",
volume = "52",
pages = "185--195",
journal = "Algebra Universalis",
issn = "0002-5240",
publisher = "Birkhauser Verlag Basel",
number = "2-3",

}

TY - JOUR

T1 - Largest extension of a finite convex geometry

AU - Adaricheva, K. V.

AU - Nation, J. B.

PY - 2005/1

Y1 - 2005/1

N2 - We present a new embedding of a finite join-semidistributive lattice into a finite atomistic join-semidistributive lattice. This embedding turns out to be the largest extension, when applied to a finite convex geometry.

AB - We present a new embedding of a finite join-semidistributive lattice into a finite atomistic join-semidistributive lattice. This embedding turns out to be the largest extension, when applied to a finite convex geometry.

KW - Anti-exchange property

KW - Atomistic

KW - Convex geometry

KW - Join-semidistributive

KW - Lattice

UR - http://www.scopus.com/inward/record.url?scp=12944258664&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=12944258664&partnerID=8YFLogxK

U2 - 10.1007/s00012-004-1844-6

DO - 10.1007/s00012-004-1844-6

M3 - Article

VL - 52

SP - 185

EP - 195

JO - Algebra Universalis

JF - Algebra Universalis

SN - 0002-5240

IS - 2-3

ER -