Linear negative stiffness honeycomb actuator with integrated force sensing

Temirlan Galimzhanov, Altay Zhakatayev, Ramil Kashapov, Zhanat Kappassov, Huseyin Atakan Varol

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Negative stiffness honeycombs (NSHs) have unique features, such as recoverable elastic buckling, impact absorption, and shock isolation. Another advantage of NSH is its variable stiffness property. Due to these advantages, they have substantial potential in applications related to vibration isolation, haptic devices, and variable impedance actuators. In this paper, the utilization of NSH as an impedance element to design a variable impedance actuator (VIA) is explored. Specifically, we focus on the force and displacement measurement problem of NSH. The integration of traditional force and position sensors would complicate the design of a NSH-based VIA actuator, increase its cost and volumetric envelope. Instead, arrays of magnets and magnetic sensors are proposed to measure both the force and compression of NSH. In order to test the hypothesis, a linear NSH actuator was designed and built. Experiments were performed to test the feasibility of the proposed approach. Results demonstrate the feasibility of using NSHs in VIA design and that magnetic sensors can be reliably used to estimate both the force and compression of NSHs.

Original languageEnglish
Title of host publication2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1589-1594
Number of pages6
ISBN (Electronic)9781728167947
DOIs
Publication statusPublished - Jul 2020
Event2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020 - Boston, United States
Duration: Jul 6 2020Jul 9 2020

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Volume2020-July

Conference

Conference2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2020
Country/TerritoryUnited States
CityBoston
Period7/6/207/9/20

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'Linear negative stiffness honeycomb actuator with integrated force sensing'. Together they form a unique fingerprint.

Cite this