Lower Bounds on the Radius of Spatial Analyticity for the KdV Equation

Sigmund Selberg, Daniel Oliveira da Silva

Research output: Contribution to journalArticle

  • 8 Citations

Abstract

We present lower bounds for the uniform radius of spatial analyticity of solutions to the Korteweg–de Vries equation, which improve earlier results due to Bona, Grujić and Kalisch.

LanguageEnglish
Pages1009-1023
Number of pages15
JournalAnnales Henri Poincare
Volume18
Issue number3
DOIs
StatePublished - Mar 1 2017

Fingerprint

KdV Equation
Analyticity
Korteweg-de Vries Equation
Radius
Lower bound
radii

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Nuclear and High Energy Physics
  • Mathematical Physics

Cite this

Lower Bounds on the Radius of Spatial Analyticity for the KdV Equation. / Selberg, Sigmund; da Silva, Daniel Oliveira.

In: Annales Henri Poincare, Vol. 18, No. 3, 01.03.2017, p. 1009-1023.

Research output: Contribution to journalArticle

@article{4dd8fc0cda454a24be074cc40c37ceac,
title = "Lower Bounds on the Radius of Spatial Analyticity for the KdV Equation",
abstract = "We present lower bounds for the uniform radius of spatial analyticity of solutions to the Korteweg–de Vries equation, which improve earlier results due to Bona, Grujić and Kalisch.",
author = "Sigmund Selberg and {da Silva}, {Daniel Oliveira}",
year = "2017",
month = "3",
day = "1",
doi = "10.1007/s00023-016-0498-1",
language = "English",
volume = "18",
pages = "1009--1023",
journal = "Annales Henri Poincare",
issn = "1424-0637",
publisher = "Birkhauser Verlag Basel",
number = "3",

}

TY - JOUR

T1 - Lower Bounds on the Radius of Spatial Analyticity for the KdV Equation

AU - Selberg,Sigmund

AU - da Silva,Daniel Oliveira

PY - 2017/3/1

Y1 - 2017/3/1

N2 - We present lower bounds for the uniform radius of spatial analyticity of solutions to the Korteweg–de Vries equation, which improve earlier results due to Bona, Grujić and Kalisch.

AB - We present lower bounds for the uniform radius of spatial analyticity of solutions to the Korteweg–de Vries equation, which improve earlier results due to Bona, Grujić and Kalisch.

UR - http://www.scopus.com/inward/record.url?scp=84973594517&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84973594517&partnerID=8YFLogxK

U2 - 10.1007/s00023-016-0498-1

DO - 10.1007/s00023-016-0498-1

M3 - Article

VL - 18

SP - 1009

EP - 1023

JO - Annales Henri Poincare

T2 - Annales Henri Poincare

JF - Annales Henri Poincare

SN - 1424-0637

IS - 3

ER -