Lysozyme gene expression in inflammatory bowel disease

G. W.H. Stamp, R. Poulsom, L. P. Chung, S. Keshav, R. E. Jeffery, J. A. Longcroft, M. Pignatelli, N. A. Wright

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Riboprobe in situ hybridization (rISH) demonstrates active lysozyme synthesis in ulcerative colitis and Crohn's disease. Maximal labeling was seen in Paneth cells, macrophages, and granulomas. Diffuse infiltration of the mucosa by lysozyme-rich polymorphs characterizes ulcerative colitis but obscures reactivity in other cell lineages in immunohistochemical studies; lysozyme mRNA is not detected in polymorphs, rISH giving a clearer picture than immunohistochemical studies of the active synthesis of lysozyme within the gut in inflammatory bowel disease. In ulcerative colitis, strong signals localized to Paneth cell metaplasia were found in 11 of 20 cases and to a lesser degree in non-Paneth cell lineages in regenerative mucosa in 13 of 20 cases. In Crohn's disease, abundant labeling was seen in tuberculoid granulomas (5 of 20) and over macrophage aggregates in the lamina propria in another 7, characteristic patterns not encountered in ulcerative colitis. Low levels of lysozyme messenger RNA were found in the ulceration-associated cell lineage ("pseudopyloric metaplasia"). These results support the view that neutrophils are largely responsible for elevated fecal lysozyme levels in ulcerative colitis and macrophages for elevated serum lysozyme levels in Crohn's disease.

Original languageEnglish
Pages (from-to)532-538
Number of pages7
JournalGastroenterology
Volume103
Issue number2
DOIs
Publication statusPublished - Aug 1992
Externally publishedYes

ASJC Scopus subject areas

  • Hepatology
  • Gastroenterology

Fingerprint

Dive into the research topics of 'Lysozyme gene expression in inflammatory bowel disease'. Together they form a unique fingerprint.

Cite this