Mechanical and burning properties of highly loaded composite propellants

Ahmet Göçmez, Cevat Erişken, Ülkü Yilmazer, Fikret Pekel, Saim Özkar

Research output: Contribution to journalArticlepeer-review

Abstract

An improvement in the performance of solid rocket motors was achieved by increasing the oxidizer content of HTPB-based solid propellants. To minimize the adverse changes in the mechanical and rheological properties due to the increased amount of hard solid particles in the soft polymeric binder matrix, the optimum combination of the particle sizes and volume fractions of the bimodal ammonium perchlorate and the aluminum powder in the solid load was obtained from the results of testing a series of propellant samples prepared by using ammonium perchlorate in four different average particle sizes, 9.22, 31.4, 171, and 323 μm. The maximum packing density of solids in the binder matrix was determined by changing the sizes and the volume fractions of fine and coarse ammonium perchlorate at constant solid loading. The average size (10.4 μm) and concentration of aluminum powder used as metallic fuel were maintained constant for ballistic requirements. Optimum sizes and fine-to-coarse ratio of ammonium perchlorate particles were determined to be at mean diameters of 31.4 and 323 μm and fine-to-coarse ratio of 35/65. Solid content of the propellant was then increased from 75 to 85.6% by volume by using the predetermined optimum sizes and fine to coarse ratio of ammonium perchlorate. Mechanical properties of the propellant samples were measured by using an Instron tester with a crosshead speed of 50 mm/ min at 25°C. The effect of oxidizer content and fine-to-coarse ratio of oxidizer on the burning rate of the propellant was also investigated by using a strand burner at various pressures. From experiments in which the size and the fine-to-coarse ratio of ammonium perchlorate were changed at constant solid loading, a minimum value of initial modulus was obtained for each fine-to-coarse ratio, indicating that the solids packing fraction is maximum at this ratio. The tensile strength and the burning rate increase, while the elongation at maximum stress decreases with increasing fine-to-coarse ratio of ammonium perchlorate. Experiments in which the total solid loading was increased at constant fine-to-coarse ratio of ammonium perchlorate show that the modulus, the tensile strength and the burning rate increase, while the elongation at maximum stress decreases with increasing solid loading. Propellants having solid loading of up to 82% exhibit acceptable mechanical properties and improved burning properties suitable for rocket applications.

Original languageEnglish
Pages (from-to)1457-1464
Number of pages8
JournalJournal of Applied Polymer Science
Volume67
Issue number8
DOIs
Publication statusPublished - Feb 22 1998
Externally publishedYes

Keywords

  • Aluminum
  • Ammonium perchlorate
  • Burning rate
  • Composite
  • HTPB
  • Mechanical properties
  • Packing
  • Propellant

ASJC Scopus subject areas

  • General Chemistry
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Mechanical and burning properties of highly loaded composite propellants'. Together they form a unique fingerprint.

Cite this