TY - GEN
T1 - Modeling and simulation of a rollerball microfluidic device
AU - Rojas-Solórzano, Luis R.
AU - Anna, Shelley L.
AU - Bradeddine, Bourtal
AU - Amon, Cristina H.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2009
Y1 - 2009
N2 - The fluid delivery process through a rollerball device is investigated by means of physical modeling and numerical simulations. The microfluidic device is intended to deliver liquid above a substrate interacting with the surrounding air. While the fluid is delivered, air entrainment occurs through the capillary gap, creating a two-phase liquid-gas mixture whose composition and properties affect significantly the quality of the continuous fluid deposition. For the numerical solution of the 2D two-phase flow governing equations, the finite volume-based finite element method is used with 2nd order time-space schemes for the fully coupled system of equations. The quality of the liquid micro-volume delivery proves to be largely affected by both the speed of the roller and fluid properties. It is found that only under very low speed and some fluid properties, it is possible to guarantee a gas free liquid deposition. Envisioning the potential use of this convenient and popular device in the deployment of microfluid layers or substances at very small quantities with controlled quality, it is apparent the need for handling and channeling out the air entrainment without perturbing the liquid quality.
AB - The fluid delivery process through a rollerball device is investigated by means of physical modeling and numerical simulations. The microfluidic device is intended to deliver liquid above a substrate interacting with the surrounding air. While the fluid is delivered, air entrainment occurs through the capillary gap, creating a two-phase liquid-gas mixture whose composition and properties affect significantly the quality of the continuous fluid deposition. For the numerical solution of the 2D two-phase flow governing equations, the finite volume-based finite element method is used with 2nd order time-space schemes for the fully coupled system of equations. The quality of the liquid micro-volume delivery proves to be largely affected by both the speed of the roller and fluid properties. It is found that only under very low speed and some fluid properties, it is possible to guarantee a gas free liquid deposition. Envisioning the potential use of this convenient and popular device in the deployment of microfluid layers or substances at very small quantities with controlled quality, it is apparent the need for handling and channeling out the air entrainment without perturbing the liquid quality.
UR - http://www.scopus.com/inward/record.url?scp=77952899728&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77952899728&partnerID=8YFLogxK
U2 - 10.1115/ICNMM2009-82010
DO - 10.1115/ICNMM2009-82010
M3 - Conference contribution
AN - SCOPUS:77952899728
SN - 9780791843499
T3 - Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009
SP - 705
EP - 716
BT - Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009
T2 - 7th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2009
Y2 - 22 June 2009 through 24 June 2009
ER -