Modeling tuberculosis transmission dynamics in Kazakhstan using SARIMA and SIR models

Aigerim Kalizhanova, Sauran Yerdessov, Yesbolat Sakko, Aigul Tursynbayeva, Shirali Kadyrov, Abduzhappar Gaipov, Ardak Kashkynbayev

Research output: Contribution to journalArticlepeer-review

Abstract

Tuberculosis (TB) is a highly contagious disease that remains a global concern affecting numerous countries. Kazakhstan has been facing considerable challenges in TB prevention and treatment for decades. This study aims to understand TB transmission dynamics by developing and comparing statistical and deterministic models: Seasonal Autoregressive Integrated Moving Average (SARIMA) and the basic Susceptible-Infected-Recovered (SIR). TB data from 2014 to 2019 were collected from the Unified National Electronic Health System (UNEHS) using retrospective quantitative analysis. SARIMA models were able to capture seasonal variations, with Model 2 exhibiting superior predictive accuracy. Both models showed declining TB incidence and revealed a notable predictive performance evaluated by statistical metrics. In addition, the SIR model calculated the basic reproduction number ($${R_0}$$) below 1, indicating a receding epidemic. Models proved the capability of each to accurately capture trends (SARIMA) and provide mathematical insights (SIR) into TB transmission dynamics. This study contributes to the general knowledge of TB transmission dynamics in Kazakhstan thus laying the foundation for more comprehensive studies on TB and control strategies.
Original languageEnglish
JournalScientific Reports
Volume14
Issue number1
DOIs
Publication statusPublished - Oct 2024

Fingerprint

Dive into the research topics of 'Modeling tuberculosis transmission dynamics in Kazakhstan using SARIMA and SIR models'. Together they form a unique fingerprint.

Cite this