Moment equations for optical pulses in dispersive and dissipative systems

M. V. Kozlov, C. J. McKinstrie, C. Xie

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The moment method is used to derive evolution equations for the energy, width and chirp of an optical pulse in a dispersive and dissipative (filtered) system. This method is conceptually simpler than the variational and soliton-perturbation methods, and allows the dispersion and dissipation coefficients to have arbitrary relative magnitude. The moment equations are used to study the effects of filtering on pulse dynamics and equilibria, and their predictions are compared to the results of numerical simulations based on the Ginzburg-Landau equation.

Original languageEnglish
Pages (from-to)194-208
Number of pages15
JournalOptics Communications
Issue number1-3
Publication statusPublished - Jul 1 2005

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Moment equations for optical pulses in dispersive and dissipative systems'. Together they form a unique fingerprint.

Cite this