Noneluting enzymatic antibiofilm coatings

Svetlana V. Pavlukhina, Jeffrey B. Kaplan, Li Xu, Wei Chang, Xiaojun Yu, Srinivasa Madhyastha, Nandadeva Yakandawala, Almagul Mentbayeva, Babar Khan, Svetlana A. Sukhishvili

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)


We developed a highly efficient, biocompatible surface coating that disperses bacterial biofilms through enzymatic cleavage of the extracellular biofilm matrix. The coating was fabricated by binding the naturally existing enzyme dispersin B (DspB) to surface-attached polymer matrices constructed via a layer-by-layer (LbL) deposition technique. LbL matrices were assembled through electrostatic interactions of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMAA), followed by chemical cross-linking with glutaraldehyde and pH-triggered removal of PMAA, producing a stable PAH hydrogel matrix used for DspB loading. The amount of DspB loaded increased linearly with the number of PAH layers in surface hydrogels. DspB was retained within these coatings in the pH range from 4 to 7.5. DspB-loaded coatings inhibited biofilm formation by two clinical strains of Staphylococcus epidermidis. Biofilm inhibition was ≥98% compared to mock-loaded coatings as determined by CFU enumeration. In addition, DspB-loaded coatings did not inhibit attachment or growth of cultured human osteoblast cells. We suggest that the use of DspB-loaded multilayer coatings presents a promising method for creating biocompatible surfaces with high antibiofilm efficiency, especially when combined with conventional antimicrobial treatment of dispersed bacteria.

Original languageEnglish
Pages (from-to)4708-4716
Number of pages9
JournalACS Applied Materials and Interfaces
Issue number9
Publication statusPublished - Sep 26 2012


  • Staphylococcus epidermidis
  • biocompatibility
  • biofilm inhibition
  • cytotoxicity
  • dispersin B
  • layer-by-layer

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint Dive into the research topics of 'Noneluting enzymatic antibiofilm coatings'. Together they form a unique fingerprint.

Cite this