Photo-fenton-like treatment of municipal wastewater

Yerkanat N. Kanafin, Ardak Makhatova, Vasilios Zarikas, Elizabeth Arkhangelsky, Stavros G. Poulopoulos

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

In this work, the photochemical treatment of a real municipal wastewater using a persulfate-driven photo-Fenton-like process was studied. The wastewater treatment efficiency was evaluated in terms of total carbon (TC), total organic carbon (TOC) and total nitrogen (TN) removal. Response surface methodology (RSM) in conjunction Box-Behnken design (BBD) and multilayer artificial neural network (ANN) have been utilized for the optimization of the treatment process. The effects of four independent factors such as reaction time, pH, K2S2O8 concentration and K2S2O8/Fe2+ molar ratio on the TC, TOC and TN removal have been investigated. The process significant factors have been determined implementing Analysis of Variance (ANOVA). Both RSM and ANN accurately found the optimum conditions for the maximum removal of TOC (100% and 98.7%, theoretically), which resulted in complete mineralization of TOC at the reaction time of 106.06 min, pH of 7.7, persulfate concentration of 30 mM and K2S2O8/Fe2+ molar ratio of 7.5 for RSM and at the reaction time of 104.93 min, pH of 7.7, persulfate concentration of 30 mM and K2S2O8/Fe2+ molar ratio of 9.57 for ANN. On the contrary, the attempts to find the optimal conditions for the maximum TC and TN removal using statistical, and neural network models were not successful.

Original languageEnglish
Article number1206
JournalCatalysts
Volume11
Issue number10
DOIs
Publication statusPublished - Oct 2021

Keywords

  • Artificial neural network
  • Box-Behnken design
  • Municipal wastewater
  • Persulfate oxidation
  • Photo-Fenton-like process
  • Response surface methodology

ASJC Scopus subject areas

  • Catalysis
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Photo-fenton-like treatment of municipal wastewater'. Together they form a unique fingerprint.

Cite this