Polynomial estimates over exponential curves in C2

Shirali Kadyrov, Yershat Sapazhanov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (ez, eα z): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.

Original languageEnglish
Title of host publicationAlgebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017
EditorsAzimbay Sadullaev, Zair Ibragimov, Utkir Rozikov, Norman Levenberg
PublisherSpringer New York
Pages93-99
Number of pages7
Volume264
ISBN (Print)9783030011437
DOIs
Publication statusPublished - Jan 1 2018
Event2nd USA-Uzbekistan Conference on Analysis and Mathematical Physics, 2017 - Urgench, Uzbekistan
Duration: Aug 8 2017Aug 12 2017

Other

Other2nd USA-Uzbekistan Conference on Analysis and Mathematical Physics, 2017
CountryUzbekistan
CityUrgench
Period8/8/178/12/17

Fingerprint

Curve
Polynomial
Theorem
Estimate

Keywords

  • Bernstein-Walsh inequality
  • Exponential curves
  • Several complex variables

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Kadyrov, S., & Sapazhanov, Y. (2018). Polynomial estimates over exponential curves in C2 In A. Sadullaev, Z. Ibragimov, U. Rozikov, & N. Levenberg (Eds.), Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017 (Vol. 264, pp. 93-99). Springer New York. https://doi.org/10.1007/978-3-030-01144-4_8

Polynomial estimates over exponential curves in C2 . / Kadyrov, Shirali; Sapazhanov, Yershat.

Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017. ed. / Azimbay Sadullaev; Zair Ibragimov; Utkir Rozikov; Norman Levenberg. Vol. 264 Springer New York, 2018. p. 93-99.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Kadyrov, S & Sapazhanov, Y 2018, Polynomial estimates over exponential curves in C2 in A Sadullaev, Z Ibragimov, U Rozikov & N Levenberg (eds), Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017. vol. 264, Springer New York, pp. 93-99, 2nd USA-Uzbekistan Conference on Analysis and Mathematical Physics, 2017, Urgench, Uzbekistan, 8/8/17. https://doi.org/10.1007/978-3-030-01144-4_8
Kadyrov S, Sapazhanov Y. Polynomial estimates over exponential curves in C2 In Sadullaev A, Ibragimov Z, Rozikov U, Levenberg N, editors, Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017. Vol. 264. Springer New York. 2018. p. 93-99 https://doi.org/10.1007/978-3-030-01144-4_8
Kadyrov, Shirali ; Sapazhanov, Yershat. / Polynomial estimates over exponential curves in C2 Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017. editor / Azimbay Sadullaev ; Zair Ibragimov ; Utkir Rozikov ; Norman Levenberg. Vol. 264 Springer New York, 2018. pp. 93-99
@inproceedings{ef41f482d5424a89a542aa1c2fbb6adc,
title = "Polynomial estimates over exponential curves in C2",
abstract = "For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (ez, eα z): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.",
keywords = "Bernstein-Walsh inequality, Exponential curves, Several complex variables",
author = "Shirali Kadyrov and Yershat Sapazhanov",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/978-3-030-01144-4_8",
language = "English",
isbn = "9783030011437",
volume = "264",
pages = "93--99",
editor = "Azimbay Sadullaev and Zair Ibragimov and Utkir Rozikov and Norman Levenberg",
booktitle = "Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017",
publisher = "Springer New York",
address = "United States",

}

TY - GEN

T1 - Polynomial estimates over exponential curves in C2

AU - Kadyrov, Shirali

AU - Sapazhanov, Yershat

PY - 2018/1/1

Y1 - 2018/1/1

N2 - For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (ez, eα z): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.

AB - For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (ez, eα z): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.

KW - Bernstein-Walsh inequality

KW - Exponential curves

KW - Several complex variables

UR - http://www.scopus.com/inward/record.url?scp=85055574820&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055574820&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-01144-4_8

DO - 10.1007/978-3-030-01144-4_8

M3 - Conference contribution

SN - 9783030011437

VL - 264

SP - 93

EP - 99

BT - Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017

A2 - Sadullaev, Azimbay

A2 - Ibragimov, Zair

A2 - Rozikov, Utkir

A2 - Levenberg, Norman

PB - Springer New York

ER -