### Abstract

For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (e^{z}, e^{α}
^{z}): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.

Original language | English |
---|---|

Title of host publication | Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017 |

Editors | Azimbay Sadullaev, Zair Ibragimov, Utkir Rozikov, Norman Levenberg |

Publisher | Springer New York |

Pages | 93-99 |

Number of pages | 7 |

Volume | 264 |

ISBN (Print) | 9783030011437 |

DOIs | |

Publication status | Published - Jan 1 2018 |

Event | 2nd USA-Uzbekistan Conference on Analysis and Mathematical Physics, 2017 - Urgench, Uzbekistan Duration: Aug 8 2017 → Aug 12 2017 |

### Other

Other | 2nd USA-Uzbekistan Conference on Analysis and Mathematical Physics, 2017 |
---|---|

Country | Uzbekistan |

City | Urgench |

Period | 8/8/17 → 8/12/17 |

### Fingerprint

### Keywords

- Bernstein-Walsh inequality
- Exponential curves
- Several complex variables

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

^{2}In A. Sadullaev, Z. Ibragimov, U. Rozikov, & N. Levenberg (Eds.),

*Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017*(Vol. 264, pp. 93-99). Springer New York. https://doi.org/10.1007/978-3-030-01144-4_8

**Polynomial estimates over exponential curves in C ^{2}
.** / Kadyrov, Shirali; Sapazhanov, Yershat.

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution

^{2}in A Sadullaev, Z Ibragimov, U Rozikov & N Levenberg (eds),

*Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017.*vol. 264, Springer New York, pp. 93-99, 2nd USA-Uzbekistan Conference on Analysis and Mathematical Physics, 2017, Urgench, Uzbekistan, 8/8/17. https://doi.org/10.1007/978-3-030-01144-4_8

^{2}In Sadullaev A, Ibragimov Z, Rozikov U, Levenberg N, editors, Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017. Vol. 264. Springer New York. 2018. p. 93-99 https://doi.org/10.1007/978-3-030-01144-4_8

}

TY - GEN

T1 - Polynomial estimates over exponential curves in C2

AU - Kadyrov, Shirali

AU - Sapazhanov, Yershat

PY - 2018/1/1

Y1 - 2018/1/1

N2 - For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (ez, eα z): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.

AB - For any complex α with non-zero imaginary part we show that Bernstein-Walsh type inequality holds on the piece of the curve { (ez, eα z): z∈ C}. Our result extends a theorem of Coman–Poletsky [6] where they considered real-valued α.

KW - Bernstein-Walsh inequality

KW - Exponential curves

KW - Several complex variables

UR - http://www.scopus.com/inward/record.url?scp=85055574820&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85055574820&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-01144-4_8

DO - 10.1007/978-3-030-01144-4_8

M3 - Conference contribution

AN - SCOPUS:85055574820

SN - 9783030011437

VL - 264

SP - 93

EP - 99

BT - Algebra, Complex Analysis, and Pluripotential Theory - 2 USUZCAMP, 2017

A2 - Sadullaev, Azimbay

A2 - Ibragimov, Zair

A2 - Rozikov, Utkir

A2 - Levenberg, Norman

PB - Springer New York

ER -