Post-translational Processing of Bovine Chondromodulin-I

Azliyati Azizan, Nicole Holaday, Peter J. Neame

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Chondromodulin-I (ChM-I) is a small glycoprotein that is abundant in fetal cartilage. Mature chondromodulin-I is processed from a larger precursor form, presumably at a proteolytic site RERR-ELVR. The precursor, mature chondromodulin-I and two processed products, the remnant left after removal of mature chondromodulin-I and a smaller, unglycosylated form, were identified using antipeptide antisera. The products of chondromodulin-I precursor processing were seen in cultured chondrocytes, a stable long-term culture chondrosarcoma cell line, as well as Chinese hamster ovary (CHO) cells transfected with an expression plasmid that contained cDNA coding for the chondromodulin-I precursor. Pulse-chase analysis allowed a processing pathway to be analyzed for chondromodulin-I. To further dissect the processing events, three constructs that express recombinant wild-type or mutant chondromodulin-I were transfected into CHO cells. We showed that chondromodulin-I is cleaved intracellularly at the predicted cleavage site, and that the mature glycopeptide is rapidly secreted immediately after processing. The chondromodulin-1 precursor has a short half-life and is not readily apparent in tissue samples, suggesting that chondromodulin is not a member of the juxtacrine family of growth factors, despite some similarities. The smaller unglycosylated form of chondromodulin-I was only observed in cartilage and not in short-term cultures or transfected cells, suggesting an extracellular processing event. No processing occurred when the precursor cleavage site was mutated to RERQ-SLVR or when precursor chondromodulin-I was expressed in the furin-deficient CHO cell line, suggesting the involvement of furin in processing.

Original languageEnglish
Pages (from-to)23632-23638
Number of pages7
JournalJournal of Biological Chemistry
Volume276
Issue number26
DOIs
Publication statusPublished - Jun 29 2001
Externally publishedYes

Fingerprint

Cricetulus
Furin
Ovary
Cartilage
Processing
Cell Line
Chondrosarcoma
Glycopeptides
Chondrocytes
Half-Life
Immune Sera
Intercellular Signaling Peptides and Proteins
Glycoproteins
Plasmids
Complementary DNA
Cells
Cell culture
Tissue

ASJC Scopus subject areas

  • Biochemistry

Cite this

Post-translational Processing of Bovine Chondromodulin-I. / Azizan, Azliyati; Holaday, Nicole; Neame, Peter J.

In: Journal of Biological Chemistry, Vol. 276, No. 26, 29.06.2001, p. 23632-23638.

Research output: Contribution to journalArticle

Azizan, Azliyati ; Holaday, Nicole ; Neame, Peter J. / Post-translational Processing of Bovine Chondromodulin-I. In: Journal of Biological Chemistry. 2001 ; Vol. 276, No. 26. pp. 23632-23638.
@article{88290b43feef465ab01c30b071608c49,
title = "Post-translational Processing of Bovine Chondromodulin-I",
abstract = "Chondromodulin-I (ChM-I) is a small glycoprotein that is abundant in fetal cartilage. Mature chondromodulin-I is processed from a larger precursor form, presumably at a proteolytic site RERR-ELVR. The precursor, mature chondromodulin-I and two processed products, the remnant left after removal of mature chondromodulin-I and a smaller, unglycosylated form, were identified using antipeptide antisera. The products of chondromodulin-I precursor processing were seen in cultured chondrocytes, a stable long-term culture chondrosarcoma cell line, as well as Chinese hamster ovary (CHO) cells transfected with an expression plasmid that contained cDNA coding for the chondromodulin-I precursor. Pulse-chase analysis allowed a processing pathway to be analyzed for chondromodulin-I. To further dissect the processing events, three constructs that express recombinant wild-type or mutant chondromodulin-I were transfected into CHO cells. We showed that chondromodulin-I is cleaved intracellularly at the predicted cleavage site, and that the mature glycopeptide is rapidly secreted immediately after processing. The chondromodulin-1 precursor has a short half-life and is not readily apparent in tissue samples, suggesting that chondromodulin is not a member of the juxtacrine family of growth factors, despite some similarities. The smaller unglycosylated form of chondromodulin-I was only observed in cartilage and not in short-term cultures or transfected cells, suggesting an extracellular processing event. No processing occurred when the precursor cleavage site was mutated to RERQ-SLVR or when precursor chondromodulin-I was expressed in the furin-deficient CHO cell line, suggesting the involvement of furin in processing.",
author = "Azliyati Azizan and Nicole Holaday and Neame, {Peter J.}",
year = "2001",
month = "6",
day = "29",
doi = "10.1074/jbc.M009967200",
language = "English",
volume = "276",
pages = "23632--23638",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "26",

}

TY - JOUR

T1 - Post-translational Processing of Bovine Chondromodulin-I

AU - Azizan, Azliyati

AU - Holaday, Nicole

AU - Neame, Peter J.

PY - 2001/6/29

Y1 - 2001/6/29

N2 - Chondromodulin-I (ChM-I) is a small glycoprotein that is abundant in fetal cartilage. Mature chondromodulin-I is processed from a larger precursor form, presumably at a proteolytic site RERR-ELVR. The precursor, mature chondromodulin-I and two processed products, the remnant left after removal of mature chondromodulin-I and a smaller, unglycosylated form, were identified using antipeptide antisera. The products of chondromodulin-I precursor processing were seen in cultured chondrocytes, a stable long-term culture chondrosarcoma cell line, as well as Chinese hamster ovary (CHO) cells transfected with an expression plasmid that contained cDNA coding for the chondromodulin-I precursor. Pulse-chase analysis allowed a processing pathway to be analyzed for chondromodulin-I. To further dissect the processing events, three constructs that express recombinant wild-type or mutant chondromodulin-I were transfected into CHO cells. We showed that chondromodulin-I is cleaved intracellularly at the predicted cleavage site, and that the mature glycopeptide is rapidly secreted immediately after processing. The chondromodulin-1 precursor has a short half-life and is not readily apparent in tissue samples, suggesting that chondromodulin is not a member of the juxtacrine family of growth factors, despite some similarities. The smaller unglycosylated form of chondromodulin-I was only observed in cartilage and not in short-term cultures or transfected cells, suggesting an extracellular processing event. No processing occurred when the precursor cleavage site was mutated to RERQ-SLVR or when precursor chondromodulin-I was expressed in the furin-deficient CHO cell line, suggesting the involvement of furin in processing.

AB - Chondromodulin-I (ChM-I) is a small glycoprotein that is abundant in fetal cartilage. Mature chondromodulin-I is processed from a larger precursor form, presumably at a proteolytic site RERR-ELVR. The precursor, mature chondromodulin-I and two processed products, the remnant left after removal of mature chondromodulin-I and a smaller, unglycosylated form, were identified using antipeptide antisera. The products of chondromodulin-I precursor processing were seen in cultured chondrocytes, a stable long-term culture chondrosarcoma cell line, as well as Chinese hamster ovary (CHO) cells transfected with an expression plasmid that contained cDNA coding for the chondromodulin-I precursor. Pulse-chase analysis allowed a processing pathway to be analyzed for chondromodulin-I. To further dissect the processing events, three constructs that express recombinant wild-type or mutant chondromodulin-I were transfected into CHO cells. We showed that chondromodulin-I is cleaved intracellularly at the predicted cleavage site, and that the mature glycopeptide is rapidly secreted immediately after processing. The chondromodulin-1 precursor has a short half-life and is not readily apparent in tissue samples, suggesting that chondromodulin is not a member of the juxtacrine family of growth factors, despite some similarities. The smaller unglycosylated form of chondromodulin-I was only observed in cartilage and not in short-term cultures or transfected cells, suggesting an extracellular processing event. No processing occurred when the precursor cleavage site was mutated to RERQ-SLVR or when precursor chondromodulin-I was expressed in the furin-deficient CHO cell line, suggesting the involvement of furin in processing.

UR - http://www.scopus.com/inward/record.url?scp=0035968171&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0035968171&partnerID=8YFLogxK

U2 - 10.1074/jbc.M009967200

DO - 10.1074/jbc.M009967200

M3 - Article

VL - 276

SP - 23632

EP - 23638

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 26

ER -