Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

Jamshid Sangirov, Ikechi Augustine Ukaegbu, Gulomjon Sangirov, Tae-Woo Lee, Hyo-Hoon Park

Research output: Contribution to journalArticlepeer-review

Abstract

A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal–oxide–semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes.
Original languageEnglish
Pages (from-to)125001
JournalJournal of Semiconductors
Volume34
Issue number12
Publication statusPublished - Dec 1 2013

Fingerprint Dive into the research topics of 'Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects'. Together they form a unique fingerprint.

Cite this