Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

Menaka Rajapakse, Bertil Schmidt, Lin Feng, Vladimir Brusic

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Background: Peptides binding to Major Histocompatibility Complex (MHC) class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA) for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results: The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule - a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1) an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2) quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion: We present two MOEA-based algorithms for finding motifs, one for self-discovery and the other for guided-discovery by experimentally determined motifs, and thereby predicting binding peptides to I-Ag7 molecule. Our experiments show that the proposed MOEA-based algorithms are better than earlier methods in predicting binding sites not only on I-Ag7 but also on most alleles of class II MHC benchmark datasets. This shows that our methods could be applicable to find binding motifs in a wide range of alleles.

Original languageEnglish
Article number459
JournalBMC Bioinformatics
Volume8
DOIs
Publication statusPublished - Nov 22 2007
Externally publishedYes

Fingerprint

Multi-objective Evolutionary Algorithm
Major Histocompatibility Complex
Evolutionary algorithms
Peptides
Molecules
Alleles
Benchmarking
Class
Affine transformation
Binders
Benchmark
Vaccines
Vaccine
Immune Response
Information use
Binding sites
Cross-validation
Experiment
Mouse
Ensemble

ASJC Scopus subject areas

  • Medicine(all)
  • Structural Biology
  • Applied Mathematics

Cite this

Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. / Rajapakse, Menaka; Schmidt, Bertil; Feng, Lin; Brusic, Vladimir.

In: BMC Bioinformatics, Vol. 8, 459, 22.11.2007.

Research output: Contribution to journalArticle

Rajapakse, Menaka ; Schmidt, Bertil ; Feng, Lin ; Brusic, Vladimir. / Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. In: BMC Bioinformatics. 2007 ; Vol. 8.
@article{47de70a646204bc5837e064c97f04934,
title = "Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms",
abstract = "Background: Peptides binding to Major Histocompatibility Complex (MHC) class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA) for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results: The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule - a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1) an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2) quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion: We present two MOEA-based algorithms for finding motifs, one for self-discovery and the other for guided-discovery by experimentally determined motifs, and thereby predicting binding peptides to I-Ag7 molecule. Our experiments show that the proposed MOEA-based algorithms are better than earlier methods in predicting binding sites not only on I-Ag7 but also on most alleles of class II MHC benchmark datasets. This shows that our methods could be applicable to find binding motifs in a wide range of alleles.",
author = "Menaka Rajapakse and Bertil Schmidt and Lin Feng and Vladimir Brusic",
year = "2007",
month = "11",
day = "22",
doi = "10.1186/1471-2105-8-459",
language = "English",
volume = "8",
journal = "BMC Bioinformatics",
issn = "1471-2105",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms

AU - Rajapakse, Menaka

AU - Schmidt, Bertil

AU - Feng, Lin

AU - Brusic, Vladimir

PY - 2007/11/22

Y1 - 2007/11/22

N2 - Background: Peptides binding to Major Histocompatibility Complex (MHC) class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA) for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results: The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule - a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1) an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2) quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion: We present two MOEA-based algorithms for finding motifs, one for self-discovery and the other for guided-discovery by experimentally determined motifs, and thereby predicting binding peptides to I-Ag7 molecule. Our experiments show that the proposed MOEA-based algorithms are better than earlier methods in predicting binding sites not only on I-Ag7 but also on most alleles of class II MHC benchmark datasets. This shows that our methods could be applicable to find binding motifs in a wide range of alleles.

AB - Background: Peptides binding to Major Histocompatibility Complex (MHC) class II molecules are crucial for initiation and regulation of immune responses. Predicting peptides that bind to a specific MHC molecule plays an important role in determining potential candidates for vaccines. The binding groove in class II MHC is open at both ends, allowing peptides longer than 9-mer to bind. Finding the consensus motif facilitating the binding of peptides to a MHC class II molecule is difficult because of different lengths of binding peptides and varying location of 9-mer binding core. The level of difficulty increases when the molecule is promiscuous and binds to a large number of low affinity peptides. In this paper, we propose two approaches using multi-objective evolutionary algorithms (MOEA) for predicting peptides binding to MHC class II molecules. One uses the information from both binders and non-binders for self-discovery of motifs. The other, in addition, uses information from experimentally determined motifs for guided-discovery of motifs. Results: The proposed methods are intended for finding peptides binding to MHC class II I-Ag7 molecule - a promiscuous binder to a large number of low affinity peptides. Cross-validation results across experiments on two motifs derived for I-Ag7 datasets demonstrate better generalization abilities and accuracies of the present method over earlier approaches. Further, the proposed method was validated and compared on two publicly available benchmark datasets: (1) an ensemble of qualitative HLA-DRB1*0401 peptide data obtained from five different sources, and (2) quantitative peptide data obtained for sixteen different alleles comprising of three mouse alleles and thirteen HLA alleles. The proposed method outperformed earlier methods on most datasets, indicating that it is well suited for finding peptides binding to MHC class II molecules. Conclusion: We present two MOEA-based algorithms for finding motifs, one for self-discovery and the other for guided-discovery by experimentally determined motifs, and thereby predicting binding peptides to I-Ag7 molecule. Our experiments show that the proposed MOEA-based algorithms are better than earlier methods in predicting binding sites not only on I-Ag7 but also on most alleles of class II MHC benchmark datasets. This shows that our methods could be applicable to find binding motifs in a wide range of alleles.

UR - http://www.scopus.com/inward/record.url?scp=38549105061&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38549105061&partnerID=8YFLogxK

U2 - 10.1186/1471-2105-8-459

DO - 10.1186/1471-2105-8-459

M3 - Article

VL - 8

JO - BMC Bioinformatics

JF - BMC Bioinformatics

SN - 1471-2105

M1 - 459

ER -