Promising application of probiotic microorganisms as Pickering emulsions stabilizers

Maryam Nejadmansouri, Mohammad Hadi Eskandari, Gholam Hossein Yousefi, Masoud Riazi, Seyed Mohammad Hashem Hosseini

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

The purpose of this work was to study the ability of nineteen food-grade microorganisms as Pickering emulsion (PE) stabilizers. Medium-chain triacylglycerol (MCT) oil-in-water (50:50) PEs were fabricated by 10 wt% or 15 wt% of thermally-inactivated yeast, cocci, Bacillus spp. and lactobacilli cells. The characteristics of microorganisms related to “Pickering stabilization” including morphology, surface charge, interfacial tension, and “contact angle” were firstly studied. After that, the cells-stabilized PEs were characterized from both kinetic and thermodynamic viewpoints, microstructure and rheological properties. The interfacial tension and “contact angle” values of various microorganisms ranged from 16.33 to 38.31 mN/m, and from 15° to 106°, respectively. The mean droplet size of PEs ranged from 11.51 to 57.69 µm. Generally, the physical stability of cell-stabilized PEs followed this order: lactobacilli > Bacillus spp. > cocci > yeast. These variations were attributed to the morphology and cell wall composition. Increasing the microorganism concentration significantly increased the physical stability of PEs from a maximum of 12 days at 10 wt% to 35 days at 15 wt% as a result of better interface coverage. Shear-thinning and dominant elastic behaviors were observed in PEs. Physical stability was affected by the free energy of detachment. Therefore, food-grade microorganisms are suggested for stabilizing PEs.

Original languageEnglish
Article number15915
JournalScientific Reports
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2023

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Promising application of probiotic microorganisms as Pickering emulsions stabilizers'. Together they form a unique fingerprint.

Cite this