Propagation of electromagnetic waves in PT -symmetric hyperbolic structures

O. V. Shramkova, G. P. Tsironis

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)


    We investigate theoretically and numerically the propagation of electromagnetic waves in PT-symmetric periodic stacks composed of hyperbolic metamaterial layers separated by dielectric media with balanced loss and gain. We derive the characteristic frequencies governing the dispersion properties of the eigenwaves of PT-symmetric semiconductor-dielectric stacks. By tuning the loss/gain level and thicknesses of the layers, we study the evolution of the dispersion dependencies. We show that the effective-medium approach does not adequately describe the propagating waves in the PT-symmetric hypercrystals, even for wavelengths that are about 100 times larger than the period of the stack. We demonstrate the existence of anisotropic transmission resonances and above-unity reflection in PT-symmetric hyperbolic systems. The PT-symmetry-breaking transition of the scattering matrix is strongly influenced by the constitutive and geometrical parameters of the layers and the angles of wave incidence.

    Original languageEnglish
    Article number035141
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Issue number3
    Publication statusPublished - Jul 20 2016

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Electronic, Optical and Magnetic Materials

    Fingerprint Dive into the research topics of 'Propagation of electromagnetic waves in PT -symmetric hyperbolic structures'. Together they form a unique fingerprint.

    Cite this