Radiation modification of Ni nanotubes by electrons

A. Kozlovskiy, M. Kaikanov, A. Tikhonov, I. Kenzhina, D. Ponomarev, M. Zdorovets

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)


    Electron irradiation of metal nanostructures is an effective tool for stimulating a controlled modification of the structural and conductive material properties. Use of the electron irradiation with energies less than 500 keV allows conducting controlled annealing of nanotube defects, which leads to the improvement of the conductive properties due to decreasing resistance. In this case, the use of radiation doses above 150 kGy induces the samples destruction, caused by the thermal heating of nanotubes, leading to the crystal lattice destruction and the sample amorphization.

    Original languageEnglish
    Article number105042
    JournalMaterials Research Express
    Issue number10
    Publication statusPublished - Oct 2017


    • electrochemical deposition
    • growth mechanisms
    • ion-track technology
    • nanostructures
    • nanotubes
    • radiation defects
    • template synthesis

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Biomaterials
    • Surfaces, Coatings and Films
    • Polymers and Plastics
    • Metals and Alloys

    Fingerprint Dive into the research topics of 'Radiation modification of Ni nanotubes by electrons'. Together they form a unique fingerprint.

    Cite this