Real time Temperature Monitoring in Liver during Magnetite Nanoparticle-enhanced Microwave Ablation with Fiber Bragg Grating sensors: Ex Vivo Analysis

Madina Jelbuldina, Alina Korobeinyk, Sanzhar Korganbayev, Daniele Tosi, Kanat Dukenbayev, Vassilis J. Inglezakis

Research output: Contribution to journalArticle

1 Citation (Scopus)


In this work, we present the design and experiments of a fiber Bragg grating (FBG) sensing network for nanoparticleenhanced microwave ablation (MWA). MWA is an emerging minimally invasive treatment for cancer care; making use of a miniaturized applicator, it is possible to deliver a cytotoxic thermal treatment in situ with high spatial confinement. Cells death is nearly instantaneous at 60 °C. The use of magnetite nanoparticles (MNPs) enhances the amount of ablated tissue, and reshapes the thermal distribution during the treatment. In order to measure the thermal maps (temperature as a function of space and time) instantaneously and in situ, a set of 3 arrays of 5 FBG sensors has been designed, mapping the thermal distribution of the tissue and estimating the ablated tissue in real time. Experiments carried out with different nanoparticle density show that the extension of the ablated region is highest for a density of 5 mg/mL. The results are displayed in form of thermal maps, over the ablation plane.

Original languageEnglish
JournalIEEE Sensors Journal
Publication statusAccepted/In press - Aug 16 2018



  • fiber Bragg grating (FBG) sensors
  • nanoparticles
  • optical fiber sensors
  • temperature measurement
  • Thermal ablation

ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Cite this