TY - JOUR
T1 - Reduction of GAG storage in MPS II mouse model following implantation on encapsulated recombinant myoblasts
AU - Friso, Adelaide
AU - Tomanin, Rosella
AU - Alba, Sabrina
AU - Gasparotto, Nicoletta
AU - Puicher, Elisabetta Piller
AU - Fusco, Mariella
AU - Hortelano, Gonzalo
AU - Muenzer, Joseph
AU - Marin, Oriano
AU - Zacchello, Franco
AU - Scarpa, Maurizio
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2005/11
Y1 - 2005/11
N2 - Background: Hunter syndrome, mucopolysaccharidosis type II (MPS II), is a X-linked inherited disorder caused by the deficiency of the enzyme iduronate-2-sulfatase (IDS), involved in the lysosomal catabolism of the glycosaminoglycans (GAG) dermatan and heparan sulfate. Such a deficiency leads to the intracellular accumulation of undegraded GAG and eventually to a progressive severe clinical pattern. Many attempts have been made in the last two to three decades to identify possible therapeutic strategies for the disorder, including gene therapy and somatic cell therapy. Methods: In this study we evaluated the intraperitoneal implantation of allogeneic myoblasts over-expressing IDS, enclosed in alginate microcapsules, in the MPS II mouse model. Animals were monitored for 8 weeks post-implantation, during which plasma and tissue IDS levels, as well as tissue and urinary GAG contents, were measured. Results and conclusions: induced enzyme activity occurred both in the plasma and in the different tissues analyzed. A significant decrease in urinary undegraded GAG between the fourth and the sixth week of treatment was observed. Moreover, a biochemical reduction of GAG deposits was measured 8 weeks after treatment in the liver and kidney, on average 30 and 38%, respectively, while in the spleen GAG levels were almost normalized. Finally, the therapeutic effect was confirmed by histolochemical examination of the same tissues. Such effects were obtained following implantation of about 1.5 × 106 recombinant cells/animal. Taken together, these results represent a clear evidence of the therapeutic efficacy of this strategy in the MPS II mouse model, and encourage further evaluation of this approach for potential treatment of human beings.
AB - Background: Hunter syndrome, mucopolysaccharidosis type II (MPS II), is a X-linked inherited disorder caused by the deficiency of the enzyme iduronate-2-sulfatase (IDS), involved in the lysosomal catabolism of the glycosaminoglycans (GAG) dermatan and heparan sulfate. Such a deficiency leads to the intracellular accumulation of undegraded GAG and eventually to a progressive severe clinical pattern. Many attempts have been made in the last two to three decades to identify possible therapeutic strategies for the disorder, including gene therapy and somatic cell therapy. Methods: In this study we evaluated the intraperitoneal implantation of allogeneic myoblasts over-expressing IDS, enclosed in alginate microcapsules, in the MPS II mouse model. Animals were monitored for 8 weeks post-implantation, during which plasma and tissue IDS levels, as well as tissue and urinary GAG contents, were measured. Results and conclusions: induced enzyme activity occurred both in the plasma and in the different tissues analyzed. A significant decrease in urinary undegraded GAG between the fourth and the sixth week of treatment was observed. Moreover, a biochemical reduction of GAG deposits was measured 8 weeks after treatment in the liver and kidney, on average 30 and 38%, respectively, while in the spleen GAG levels were almost normalized. Finally, the therapeutic effect was confirmed by histolochemical examination of the same tissues. Such effects were obtained following implantation of about 1.5 × 106 recombinant cells/animal. Taken together, these results represent a clear evidence of the therapeutic efficacy of this strategy in the MPS II mouse model, and encourage further evaluation of this approach for potential treatment of human beings.
KW - Gene therapy
KW - Hunter syndrome
KW - Lysosomal enzymes
KW - MPS II mouse model
KW - Microcapsules
KW - Somatic cell therapy
UR - http://www.scopus.com/inward/record.url?scp=27944473627&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27944473627&partnerID=8YFLogxK
U2 - 10.1002/jgm.790
DO - 10.1002/jgm.790
M3 - Article
C2 - 15966019
AN - SCOPUS:27944473627
SN - 1099-498X
VL - 7
SP - 1482
EP - 1491
JO - Journal of Gene Medicine
JF - Journal of Gene Medicine
IS - 11
ER -