TY - JOUR
T1 - Regulation of epithelial sodium channels by short actin filaments
AU - Berdiev, Bakhram K.
AU - Prat, Adriana G.
AU - Cantiello, Horacio F.
AU - Ausiello, Dennis A.
AU - Fuller, Catherine M.
AU - Jovov, Biljana
AU - Benos, Dale J.
AU - Ismailov, Iskander I.
PY - 1996
Y1 - 1996
N2 - Cytoskeletal elements play an important role in the regulation of ion transport in epithelia. We have studied the effects of actin filaments of different length on the α, β, γ-rENaC (rat epithelial Na+ channel) in planar lipid bilayers. We found the following. 1) Short actin filaments caused a 2-fold decrease in unitary conductance and a 2-fold increase in open probability (P(o)) of α,β,γ-rENaC. 2) α,β,γ-rENaC could be transiently activated by protein kinase A (PKA) plus ATP in the presence, but not in the absence, of actin. 3) ATP in the presence of actin was also able to induce a transitory activation of α,β,γ,-rENaC, although with a shortened time course and with a lower magnitude of change in P(o). 4) DNase I, an agent known to prohibit elongation of actin filaments, prevented activation of α,β,γ-rENaC by ATP or PKA plus ATP. 5) Cytochalasin D, added after rundown of α,β,γ-rENaC activity following ATP or PKA plus ATP treatment, produced a second transient activation of α,β,γ-rENaC. 6) Gelsolin, a protein that stabilizes polymerization of actin filaments at certain lengths, evoked a sustained activation of α,β,γ-rENaC at actin/gelsolin ratios of <32:1, with a maximal effect at an actin/gelsolin ratio of 2:1. These results suggest that short actin filaments activate α,β,γ-rENaC. PKA-mediated phosphorylation augments activation of this channel by decreasing the rate of elongation of actin filaments. These results are consistent with the hypothesis that cloned α,β,γ-rENaCs form a core conduction unit of epithelial Na+ channels and that interaction of these channels with other associated proteins, such as short actin filaments, confers regulation to channel activity.
AB - Cytoskeletal elements play an important role in the regulation of ion transport in epithelia. We have studied the effects of actin filaments of different length on the α, β, γ-rENaC (rat epithelial Na+ channel) in planar lipid bilayers. We found the following. 1) Short actin filaments caused a 2-fold decrease in unitary conductance and a 2-fold increase in open probability (P(o)) of α,β,γ-rENaC. 2) α,β,γ-rENaC could be transiently activated by protein kinase A (PKA) plus ATP in the presence, but not in the absence, of actin. 3) ATP in the presence of actin was also able to induce a transitory activation of α,β,γ,-rENaC, although with a shortened time course and with a lower magnitude of change in P(o). 4) DNase I, an agent known to prohibit elongation of actin filaments, prevented activation of α,β,γ-rENaC by ATP or PKA plus ATP. 5) Cytochalasin D, added after rundown of α,β,γ-rENaC activity following ATP or PKA plus ATP treatment, produced a second transient activation of α,β,γ-rENaC. 6) Gelsolin, a protein that stabilizes polymerization of actin filaments at certain lengths, evoked a sustained activation of α,β,γ-rENaC at actin/gelsolin ratios of <32:1, with a maximal effect at an actin/gelsolin ratio of 2:1. These results suggest that short actin filaments activate α,β,γ-rENaC. PKA-mediated phosphorylation augments activation of this channel by decreasing the rate of elongation of actin filaments. These results are consistent with the hypothesis that cloned α,β,γ-rENaCs form a core conduction unit of epithelial Na+ channels and that interaction of these channels with other associated proteins, such as short actin filaments, confers regulation to channel activity.
UR - http://www.scopus.com/inward/record.url?scp=0030003079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030003079&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.30.17704
DO - 10.1074/jbc.271.30.17704
M3 - Article
C2 - 8663510
AN - SCOPUS:0030003079
VL - 271
SP - 17704
EP - 17710
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 30
ER -