Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle

Yifeng Wang, Alevtina Neyman, Elizabeth Arkhangelsky, Vitaly Gitis, Louisa Meshi, Ira A. Weinstock

Research output: Contribution to journalArticle

67 Citations (Scopus)

Abstract

Cryogenic "trapping" was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; α-Xn+W12O 40 (8-n)-, Xn+ = Al3+ and "2H+", and α-Xn+W11O39 (12-n)-, Xn+ = P5+, Si4+, and Al3+) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ("nucleation") are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ("lattice matching") is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via "islands", a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of α-AlW11O39 9- (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (κ-1 = 1.0 nm), which indicate that ∼99% of the 2970 K+ counter cations lie within ca. 1.5 nm (∼3 hydrated K + ion diameters) from the outer surface of the POM shell. Energetic analysis of the 1.57 ± 0.04 nm center-to-center distance between molecules of 1 further indicates that K+ ions reside in the ca. 4.5 Å spaces between the bound ligands. These findings reveal an important structural role for counter cations within POM ligand shells on gold nanoparticles, analogous to that for cations in the monolayer walls of hollow POM-macroanion vesicles.

Original languageEnglish
Pages (from-to)17412-17422
Number of pages11
JournalJournal of the American Chemical Society
Volume131
Issue number47
DOIs
Publication statusPublished - Dec 2 2009
Externally publishedYes

Fingerprint

Gold
Nanoparticles
Self assembly
Anions
Monolayers
Negative ions
Ligands
Cations
Positive ions
Citric Acid
Transmission electron microscopy
Surface Plasmon Resonance
Surface plasmon resonance
Association reactions
Ions
Molecules
Self assembled monolayers
Zeta potential
Thermodynamics
Islands

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry

Cite this

Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. / Wang, Yifeng; Neyman, Alevtina; Arkhangelsky, Elizabeth; Gitis, Vitaly; Meshi, Louisa; Weinstock, Ira A.

In: Journal of the American Chemical Society, Vol. 131, No. 47, 02.12.2009, p. 17412-17422.

Research output: Contribution to journalArticle

Wang, Yifeng ; Neyman, Alevtina ; Arkhangelsky, Elizabeth ; Gitis, Vitaly ; Meshi, Louisa ; Weinstock, Ira A. / Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle. In: Journal of the American Chemical Society. 2009 ; Vol. 131, No. 47. pp. 17412-17422.
@article{830e8d3eff0e495eb096962b44394e53,
title = "Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle",
abstract = "Cryogenic {"}trapping{"} was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; α-Xn+W12O 40 (8-n)-, Xn+ = Al3+ and {"}2H+{"}, and α-Xn+W11O39 (12-n)-, Xn+ = P5+, Si4+, and Al3+) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ({"}nucleation{"}) are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ({"}lattice matching{"}) is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via {"}islands{"}, a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of α-AlW11O39 9- (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (κ-1 = 1.0 nm), which indicate that ∼99{\%} of the 2970 K+ counter cations lie within ca. 1.5 nm (∼3 hydrated K + ion diameters) from the outer surface of the POM shell. Energetic analysis of the 1.57 ± 0.04 nm center-to-center distance between molecules of 1 further indicates that K+ ions reside in the ca. 4.5 {\AA} spaces between the bound ligands. These findings reveal an important structural role for counter cations within POM ligand shells on gold nanoparticles, analogous to that for cations in the monolayer walls of hollow POM-macroanion vesicles.",
author = "Yifeng Wang and Alevtina Neyman and Elizabeth Arkhangelsky and Vitaly Gitis and Louisa Meshi and Weinstock, {Ira A.}",
year = "2009",
month = "12",
day = "2",
doi = "10.1021/ja907815d",
language = "English",
volume = "131",
pages = "17412--17422",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "47",

}

TY - JOUR

T1 - Self-assembly and structure of directly imaged inorganic-anion monolayers on a gold nanoparticle

AU - Wang, Yifeng

AU - Neyman, Alevtina

AU - Arkhangelsky, Elizabeth

AU - Gitis, Vitaly

AU - Meshi, Louisa

AU - Weinstock, Ira A.

PY - 2009/12/2

Y1 - 2009/12/2

N2 - Cryogenic "trapping" was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; α-Xn+W12O 40 (8-n)-, Xn+ = Al3+ and "2H+", and α-Xn+W11O39 (12-n)-, Xn+ = P5+, Si4+, and Al3+) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ("nucleation") are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ("lattice matching") is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via "islands", a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of α-AlW11O39 9- (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (κ-1 = 1.0 nm), which indicate that ∼99% of the 2970 K+ counter cations lie within ca. 1.5 nm (∼3 hydrated K + ion diameters) from the outer surface of the POM shell. Energetic analysis of the 1.57 ± 0.04 nm center-to-center distance between molecules of 1 further indicates that K+ ions reside in the ca. 4.5 Å spaces between the bound ligands. These findings reveal an important structural role for counter cations within POM ligand shells on gold nanoparticles, analogous to that for cations in the monolayer walls of hollow POM-macroanion vesicles.

AB - Cryogenic "trapping" was used to obtain the first TEM images of self-assembled monolayers of inorganic anions on a gold nanoparticle. This unique structural information makes it possible to study the formation of a protecting-ligand shell at an unprecedented level of detail. The protecting ligands are polyoxometalates (POMs; α-Xn+W12O 40 (8-n)-, Xn+ = Al3+ and "2H+", and α-Xn+W11O39 (12-n)-, Xn+ = P5+, Si4+, and Al3+) with large negative charges for association with the gold surface and W atoms (Z = 74) for TEM imaging. The POM-anion shells were obtained by ligand exchange from citrate-protected 13.8 nm gold nanoparticles. Replacement of the organic (citrate) by inorganic (tungsten-oxide) ligand shells results in substantial changes in the surface plasmon resonance (SPR). By correlating cryo-TEM images with changes in the SPR, degrees of surface coverage were reliably quantified by UV-visible spectroscopy. Then, the kinetics and thermodynamics of ligand-shell formation were investigated by systematically varying POM structure and charge. Rates of POM association with the gold surface ("nucleation") are inhibited by the electric-potential barrier of the citrate-stabilized particles, while binding affinities increase linearly with the charges (from 5- to 9-) of structurally different POM anions, suggesting that no single orientation ("lattice matching") is required for monolayer self-assembly. Time-dependent cryo-TEM images reveal that monolayer growth occurs via "islands", a mechanism that points to cation-mediated attraction between bound POMs. Complete ligand shells comprised of 330 molecules of α-AlW11O39 9- (1) possess small net charges (29e from zeta-potential measurements) and short Debye lengths (κ-1 = 1.0 nm), which indicate that ∼99% of the 2970 K+ counter cations lie within ca. 1.5 nm (∼3 hydrated K + ion diameters) from the outer surface of the POM shell. Energetic analysis of the 1.57 ± 0.04 nm center-to-center distance between molecules of 1 further indicates that K+ ions reside in the ca. 4.5 Å spaces between the bound ligands. These findings reveal an important structural role for counter cations within POM ligand shells on gold nanoparticles, analogous to that for cations in the monolayer walls of hollow POM-macroanion vesicles.

UR - http://www.scopus.com/inward/record.url?scp=72249098103&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72249098103&partnerID=8YFLogxK

U2 - 10.1021/ja907815d

DO - 10.1021/ja907815d

M3 - Article

VL - 131

SP - 17412

EP - 17422

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 47

ER -