TY - JOUR
T1 - Sharp remainder of the Poincaré inequality for Baouendi-Grushin vector fields
AU - Suragan, Durvudkhan
AU - Yessirkegenov, Nurgissa
N1 - Publisher Copyright:
© 2023 World Scientific Publishing Company.
PY - 2022
Y1 - 2022
N2 - In this note, we establish a sharp remainder formula for the Poincaré inequality for the Baouendi-Grushin vector fields. We give a simple proof for it without using the variational principle. As an application, we obtain a blow-up result for solutions to the Dirichlet initial-boundary value problem for the Baouendi-Grushin heat operator.
AB - In this note, we establish a sharp remainder formula for the Poincaré inequality for the Baouendi-Grushin vector fields. We give a simple proof for it without using the variational principle. As an application, we obtain a blow-up result for solutions to the Dirichlet initial-boundary value problem for the Baouendi-Grushin heat operator.
KW - Baouendi-Grushin operator
KW - blow-up solution
KW - eigenfunction
KW - Poincaré inequalitiy
UR - http://www.scopus.com/inward/record.url?scp=85135481243&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85135481243&partnerID=8YFLogxK
U2 - 10.1142/S1793557123500419
DO - 10.1142/S1793557123500419
M3 - Article
AN - SCOPUS:85135481243
SN - 1793-5571
JO - Asian-European Journal of Mathematics
JF - Asian-European Journal of Mathematics
M1 - 2350041
ER -