Abstract
Photosensitive nanostructured heterojunctions n-TiN/p-Si were fabricated by means of titanium nitride thin films deposition (n-type conductivity) by the DC reactive magnetron sputtering onto nano structured single crystal substrates of p-type Si (100). The temperature dependencies of the height of the potential barrier and series resistance of the n-TiN/p-Si heterojunctions were investigated. The dominant current transport mechanisms through the heterojunctions under investigation were determined at forward and reverse bias. The heterojunctions under investigation generate open-circuit voltage Voc = 0.8 V, short-circuit current Isc = 3.72 mA/cm2 and fill factor FF = 0.5 under illumination of 100 mW/cm2.
Original language | English |
---|---|
Pages (from-to) | 542-548 |
Number of pages | 7 |
Journal | Semiconductors |
Volume | 51 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 1 2017 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics