TY - JOUR
T1 - Simian virus 40 large T antigen's association with the CUL7 SCF complex contributes to cellular transformation
AU - Kasper, Jocelyn S.
AU - Kuwabara, Hiroshi
AU - Arai, Takehiro
AU - Ali, Syed Hamid
AU - DeCaprio, James A.
PY - 2005/9
Y1 - 2005/9
N2 - Simian virus 40 large T antigen (T Ag) is capable of immortalizing and transforming rodent cells. The transforming activity of T Ag is due in large part to perturbation of the tumor suppressor proteins p53 and the retinoblastoma (pRB) family members. Inactivation of these tumor suppressors may not be sufficient for T Ag-mediated cellular transformation. It has been shown that T Ag associates with an SCF-like complex that contains a member of the cullin family of E3 ubiquitin ligases, CUL7, as well as SKP1, RBX1, and an F-box protein, FBXW8. We identified T Ag residues 69 to 83 as required for T Ag binding to the CUL7 complex. We demonstrate that Δ69-83 T Ag, while it lost its ability to associate with CUL7, retained binding to p53 and pRB family members. In the presence of CUL7, wild-type (WT) T Ag but not Δ69-83 T Ag was able to induce proliferation of mouse embryo fibroblasts, an indication of cellular transformation. In contrast, WT and Δ69-83 T Ag enabled mouse embryo fibroblasts to proliferate to similarly high densities in the absence of CUL7. Our data suggest that, in addition to p53 and the pRB family members, T Ag serves to bind to and inactivate the growth-suppressing properties of CUL7. In addition, these results imply that, at least in the presence of T Ag, CUL7 may function as a tumor suppressor.
AB - Simian virus 40 large T antigen (T Ag) is capable of immortalizing and transforming rodent cells. The transforming activity of T Ag is due in large part to perturbation of the tumor suppressor proteins p53 and the retinoblastoma (pRB) family members. Inactivation of these tumor suppressors may not be sufficient for T Ag-mediated cellular transformation. It has been shown that T Ag associates with an SCF-like complex that contains a member of the cullin family of E3 ubiquitin ligases, CUL7, as well as SKP1, RBX1, and an F-box protein, FBXW8. We identified T Ag residues 69 to 83 as required for T Ag binding to the CUL7 complex. We demonstrate that Δ69-83 T Ag, while it lost its ability to associate with CUL7, retained binding to p53 and pRB family members. In the presence of CUL7, wild-type (WT) T Ag but not Δ69-83 T Ag was able to induce proliferation of mouse embryo fibroblasts, an indication of cellular transformation. In contrast, WT and Δ69-83 T Ag enabled mouse embryo fibroblasts to proliferate to similarly high densities in the absence of CUL7. Our data suggest that, in addition to p53 and the pRB family members, T Ag serves to bind to and inactivate the growth-suppressing properties of CUL7. In addition, these results imply that, at least in the presence of T Ag, CUL7 may function as a tumor suppressor.
UR - http://www.scopus.com/inward/record.url?scp=24644525084&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=24644525084&partnerID=8YFLogxK
U2 - 10.1128/JVI.79.18.11685-11692.2005
DO - 10.1128/JVI.79.18.11685-11692.2005
M3 - Article
C2 - 16140746
AN - SCOPUS:24644525084
VL - 79
SP - 11685
EP - 11692
JO - Journal of Virology
JF - Journal of Virology
SN - 0022-538X
IS - 18
ER -