TY - GEN
T1 - Simulations of fast x-ray detectors based on multichannel plates
AU - Adams, B.
AU - Insepov, Z.
AU - Norem, J.
AU - Ivanov, V.
PY - 2012/12/1
Y1 - 2012/12/1
N2 - High-performance detectors with high spatial and time resolutions are required in applications such as imaging of fast processes, time-resolved coherent scattering, and time-resolved X-ray spectroscopy. Recently a new type of X-ray detector was proposed, based on microchannel plates (MCP) coated with resistive and emissive layers inside the pores by using atomic-layer deposition with better functional optimizations. Two microscopic Monte Carlo codes were used to calculate the characteristics of secondary electrons emitted from a photocathode irradiated by X-rays with energies of 1-15 keV and by electrons with energies in the interval of 0- -2 keV. WO3 was selected as the photocathode and the electron emissive material. The emissive characteristics obtained by the microscopic Monte Carlo codes were used as input data for a third, macroscopic MCP simulation Monte Carlo code, for calculating the gain and transit time spread of a MCP-based X-ray detector. Our simulation results showed that the X-ray detector should improve the spatial and time resolution and push the development of high-quantum-yield photocathodes based on MCPs.
AB - High-performance detectors with high spatial and time resolutions are required in applications such as imaging of fast processes, time-resolved coherent scattering, and time-resolved X-ray spectroscopy. Recently a new type of X-ray detector was proposed, based on microchannel plates (MCP) coated with resistive and emissive layers inside the pores by using atomic-layer deposition with better functional optimizations. Two microscopic Monte Carlo codes were used to calculate the characteristics of secondary electrons emitted from a photocathode irradiated by X-rays with energies of 1-15 keV and by electrons with energies in the interval of 0- -2 keV. WO3 was selected as the photocathode and the electron emissive material. The emissive characteristics obtained by the microscopic Monte Carlo codes were used as input data for a third, macroscopic MCP simulation Monte Carlo code, for calculating the gain and transit time spread of a MCP-based X-ray detector. Our simulation results showed that the X-ray detector should improve the spatial and time resolution and push the development of high-quantum-yield photocathodes based on MCPs.
UR - http://www.scopus.com/inward/record.url?scp=84885672276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84885672276&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84885672276
SN - 9783954501151
T3 - IPAC 2012 - International Particle Accelerator Conference 2012
SP - 939
EP - 941
BT - IPAC 2012 - International Particle Accelerator Conference 2012
T2 - 3rd International Particle Accelerator Conference 2012, IPAC 2012
Y2 - 20 May 2012 through 25 May 2012
ER -