Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance

Duygu Karabelli, Soumya Singh, Steffen Kiemel, Jan Koller, Aishuak Konarov, Frank Stubhan, Robert Miehe, Max Weeber, Zhumabay Bakenov, Kai Peter Birke

Research output: Contribution to journalReview articlepeer-review


Till 2020 the predominant key success factors of battery development have been overwhelmingly energy density, power density, lifetime, safety, and costs per kWh. That is why there is a high expectation on energy storage systems such as lithium-air (Li-O2) and lithium-sulfur (Li-S) systems, especially for mobile applications. These systems have high theoretical specific energy densities compared to conventional Li-ion systems. If the challenges such as practical implementation, low energy efficiency, and cycle life are handled, these systems could provide an interesting energy source for EVs. However, various raw materials are increasingly under critical discussion. Though only 3 wt% of metallic lithium is present in a modern Li-ion cell, absolute high amounts of lithium demand will rise due to the fast-growing market for traction and stationary batteries. Moreover, many lithium sources are not available without compromising environmental aspects. Therefore, there is a growing focus on alternative technologies such as Na-ion and Zn-ion batteries. On a view of Na-ion batteries, especially the combination with carbons derived from food waste as negative electrodes may generate a promising overall cost structure, though energy densities are not as favorable as for Li-ion batteries. Within the scope of this work, the future potential of sodium-based batteries will be discussed in view of sustainability and abundance vs. maximization of electric performance. The major directions of cathode materials development are reviewed and the tendency towards designing high-performance systems is discussed. This paper provides an outlook on the potential of sodium-based batteries in the future battery market of mobile and stationary applications.

Original languageEnglish
Article number605129
JournalFrontiers in Energy Research
Publication statusPublished - Dec 21 2020


  • Na-ion batteries
  • post-Li-ion technologies
  • raw materials, battery cost
  • sodium battery chemistries
  • stationary batteries
  • X electric vehicle

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Economics and Econometrics

Fingerprint Dive into the research topics of 'Sodium-Based Batteries: In Search of the Best Compromise Between Sustainability and Maximization of Electric Performance'. Together they form a unique fingerprint.

Cite this