Stability of integral persistence diagrams

A. E. Abzhanov, Ya V. Bazaikin

Research output: Contribution to journalArticle

Abstract

We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.

Original languageEnglish
Pages (from-to)130-141
Number of pages12
JournalSiberian Electronic Mathematical Reports
Volume11
Publication statusPublished - 2014
Externally publishedYes

Fingerprint

Persistence
Diagram
Excursion
Concepts

Keywords

  • Computational topology
  • Persistence
  • Stability

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Abzhanov, A. E., & Bazaikin, Y. V. (2014). Stability of integral persistence diagrams. Siberian Electronic Mathematical Reports, 11, 130-141.

Stability of integral persistence diagrams. / Abzhanov, A. E.; Bazaikin, Ya V.

In: Siberian Electronic Mathematical Reports, Vol. 11, 2014, p. 130-141.

Research output: Contribution to journalArticle

Abzhanov, AE & Bazaikin, YV 2014, 'Stability of integral persistence diagrams', Siberian Electronic Mathematical Reports, vol. 11, pp. 130-141.
Abzhanov, A. E. ; Bazaikin, Ya V. / Stability of integral persistence diagrams. In: Siberian Electronic Mathematical Reports. 2014 ; Vol. 11. pp. 130-141.
@article{7726c45073214abea1342adf5d03920a,
title = "Stability of integral persistence diagrams",
abstract = "We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.",
keywords = "Computational topology, Persistence, Stability",
author = "Abzhanov, {A. E.} and Bazaikin, {Ya V.}",
year = "2014",
language = "English",
volume = "11",
pages = "130--141",
journal = "Siberian Electronic Mathematical Reports",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

TY - JOUR

T1 - Stability of integral persistence diagrams

AU - Abzhanov, A. E.

AU - Bazaikin, Ya V.

PY - 2014

Y1 - 2014

N2 - We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.

AB - We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.

KW - Computational topology

KW - Persistence

KW - Stability

UR - http://www.scopus.com/inward/record.url?scp=85007483162&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85007483162&partnerID=8YFLogxK

M3 - Article

VL - 11

SP - 130

EP - 141

JO - Siberian Electronic Mathematical Reports

JF - Siberian Electronic Mathematical Reports

SN - 1813-3304

ER -