Abstract
The issue of rainfall-induced slope failure has attracted more attention from geotechnical engineers as a consequence of global warming. Current cumulative waste disposal has generated scientific interest in the utilization of waste materials in geotechnical design for climate change adaptation measures. Taking into consideration the effect of slope height and angle, steel slag—a waste product derived from the production of steel—was investigated as a slope cover against rainfall. To assess the stability of the slope and the infiltration of water into the soil, numerical analyses were conducted using both SEEP/W and SLOPE/W software in conjunction with rainfall conditions. Based on the findings, it can be concluded that increasing the slope's elevation and inclination will have an adverse effect on its safety factor. Steel slag can nevertheless be utilized for minimizing rainwater infiltration into the slope, as indicated by the pore-water pressure variations and graphs of the safety factor versus time. For a 20-m slope height, steel slag slopes have demonstrated a lower factor of safety difference in comparison to the initial slope without remediation. Regardless of slope angle and slope height, the safety factor reduces marginally during rainfall.
Original language | English |
---|---|
Article number | 7711 |
Journal | Scientific Reports |
Volume | 14 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2024 |
Keywords
- Rainfall
- Slope stability
- Steel slag
- Unsaturated soil
ASJC Scopus subject areas
- General