TY - JOUR
T1 - Study on emotion recognition bias in different regional groups
AU - Lukac, Martin
AU - Zhambulova, Gulnaz
AU - Abdiyeva, Kamila
AU - Lewis, Michael
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Human-machine communication can be substantially enhanced by the inclusion of high-quality real-time recognition of spontaneous human emotional expressions. However, successful recognition of such expressions can be negatively impacted by factors such as sudden variations of lighting, or intentional obfuscation. Reliable recognition can be more substantively impeded due to the observation that the presentation and meaning of emotional expressions can vary significantly based on the culture of the expressor and the environment within which the emotions are expressed. As an example, an emotion recognition model trained on a regionally-specific database collected from North America might fail to recognize standard emotional expressions from another region, such as East Asia. To address the problem of regional and cultural bias in emotion recognition from facial expressions, we propose a meta-model that fuses multiple emotional cues and features. The proposed approach integrates image features, action level units, micro-expressions and macro-expressions into a multi-cues emotion model (MCAM). Each of the facial attributes incorporated into the model represents a specific category: fine-grained content-independent features, facial muscle movements, short-term facial expressions and high-level facial expressions. The results of the proposed meta-classifier (MCAM) approach show that a) the successful classification of regional facial expressions is based on non-sympathetic features b) learning the emotional facial expressions of some regional groups can confound the successful recognition of emotional expressions of other regional groups unless it is done from scratch and c) the identification of certain facial cues and features of the data-sets that serve to preclude the design of the perfect unbiased classifier. As a result of these observations we posit that to learn certain regional emotional expressions, other regional expressions first have to be “forgotten”.
AB - Human-machine communication can be substantially enhanced by the inclusion of high-quality real-time recognition of spontaneous human emotional expressions. However, successful recognition of such expressions can be negatively impacted by factors such as sudden variations of lighting, or intentional obfuscation. Reliable recognition can be more substantively impeded due to the observation that the presentation and meaning of emotional expressions can vary significantly based on the culture of the expressor and the environment within which the emotions are expressed. As an example, an emotion recognition model trained on a regionally-specific database collected from North America might fail to recognize standard emotional expressions from another region, such as East Asia. To address the problem of regional and cultural bias in emotion recognition from facial expressions, we propose a meta-model that fuses multiple emotional cues and features. The proposed approach integrates image features, action level units, micro-expressions and macro-expressions into a multi-cues emotion model (MCAM). Each of the facial attributes incorporated into the model represents a specific category: fine-grained content-independent features, facial muscle movements, short-term facial expressions and high-level facial expressions. The results of the proposed meta-classifier (MCAM) approach show that a) the successful classification of regional facial expressions is based on non-sympathetic features b) learning the emotional facial expressions of some regional groups can confound the successful recognition of emotional expressions of other regional groups unless it is done from scratch and c) the identification of certain facial cues and features of the data-sets that serve to preclude the design of the perfect unbiased classifier. As a result of these observations we posit that to learn certain regional emotional expressions, other regional expressions first have to be “forgotten”.
UR - http://www.scopus.com/inward/record.url?scp=85160086258&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160086258&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-34932-z
DO - 10.1038/s41598-023-34932-z
M3 - Article
C2 - 37225756
AN - SCOPUS:85160086258
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 8414
ER -