The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5- bisphosphate and TORC2

Maria Fadri, Alexes Daquinag, Shimei Wang, Tao Xue, Jeannette Kunz

Research output: Contribution to journalArticlepeer-review

99 Citations (Scopus)

Abstract

Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] is a key second messenger that regulates actin and membrane dynamics, as well as other cellular processes. Many of the effects of PtdIns(4,5)P2 are mediated by binding to effector proteins that contain a pleckstrin homology (PH) domain. Here, we identify two novel effectors of PtdIns(4,5)P2 in the budding yeast Saccharomyces cerevisiae: the PH domain containing protein Slm1 and its homolog Slm2. Slm1 and Slm2 serve redundant roles essential for cell growth and actin cytoskeleton polarization. Slm1 and Slm2 bind PtdIns(4,5)P 2 through their PH domains. In addition, Slm1 and Slm2 physically interact with Avo2 and Bit61, two components of the TORC2 signaling complex, which mediates Tor2 signaling to the actin cytoskeleton. Together, these interactions coordinately regulate Slm1 targeting to the plasma membrane. Our results thus identify two novel effectors of PtdIns(4,5)P2 regulating cell growth and actin organization and suggest that Slm1 and Slm2 integrate inputs from the PtdIns(4,5)P2 and TORC2 to modulate polarized actin assembly and growth.

Original languageEnglish
Pages (from-to)1883-1900
Number of pages18
JournalMolecular biology of the cell
Volume16
Issue number4
DOIs
Publication statusPublished - Apr 2005

ASJC Scopus subject areas

  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5- bisphosphate and TORC2'. Together they form a unique fingerprint.

Cite this