TY - JOUR
T1 - Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells
AU - Chikina, Aleksandra S.
AU - Rubtsova, Svetlana N.
AU - Lomakina, Maria E.
AU - Potashnikova, Daria M.
AU - Vorobjev, Ivan A.
AU - Alexandrova, Antonina Y.
N1 - Publisher Copyright:
© 2019 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Background Information: Metastatic disease is caused by the ability of cancer cells to reach distant organs and form secondary lesions at new locations. Dissemination of cancer cells depends on their migration plasticity – an ability to switch between motility modes driven by distinct molecular machineries. One of such switches is mesenchymal-to-amoeboid transition. Although mesenchymal migration of individual cells requires Arp2/3-dependent actin polymerisation, amoeboid migration is characterised by a high level of actomyosin contractility and often involves the formation of membrane blebs. The acquisition of amoeboid motility by mesenchymal cells is often associated with enhanced metastasis. Results: We studied the ability of mesenchymal HT1080 fibrosarcoma cells to switch to amoeboid motility. We induced the transition from lamellipodium-rich to blebbing phenotype either by down-regulating the Arp2/3 complex, pharmacologically or by RNAi, or by decreasing substrate adhesiveness. Each of these treatments induced blebbing in a subset of fibrosarcoma cells, but not in normal subcutaneous fibroblasts. A significant fraction of HT1080 cells that switched to blebbing behaviour exhibited stem cell-like features, such as expression of the stem cell marker CD133, an increased efflux of Hoechst-33342 and positive staining for Oct4, Sox2 and Nanog. Furthermore, the isolated CD133+ cells demonstrated an increased ability to switch to bleb-rich amoeboid phenotype both under inhibitor's treatment and in 3D collagen gels. Conclusions: Together, our data show a significant correlation between the increased ability of cells to switch between migration modes and their stem-like features, suggesting that migration plasticity is an additional property of stem-like population of fibrosarcoma cells. This combination of features could facilitate both dissemination of these cells to distant locations, and their establishment self-renewal in a new microenvironment, as required for metastasis formation. Significance: These data suggest that migration plasticity is a new feature of cancer stem-like cells that can significantly facilitate their dissemination to a secondary location by allowing them to adapt quickly to challenging microenvironments. Moreover, it complements their resistance to apoptosis and self-renewal potential, thus enabling them not only to disseminate efficiently, but also to survive and colonise new niches.
AB - Background Information: Metastatic disease is caused by the ability of cancer cells to reach distant organs and form secondary lesions at new locations. Dissemination of cancer cells depends on their migration plasticity – an ability to switch between motility modes driven by distinct molecular machineries. One of such switches is mesenchymal-to-amoeboid transition. Although mesenchymal migration of individual cells requires Arp2/3-dependent actin polymerisation, amoeboid migration is characterised by a high level of actomyosin contractility and often involves the formation of membrane blebs. The acquisition of amoeboid motility by mesenchymal cells is often associated with enhanced metastasis. Results: We studied the ability of mesenchymal HT1080 fibrosarcoma cells to switch to amoeboid motility. We induced the transition from lamellipodium-rich to blebbing phenotype either by down-regulating the Arp2/3 complex, pharmacologically or by RNAi, or by decreasing substrate adhesiveness. Each of these treatments induced blebbing in a subset of fibrosarcoma cells, but not in normal subcutaneous fibroblasts. A significant fraction of HT1080 cells that switched to blebbing behaviour exhibited stem cell-like features, such as expression of the stem cell marker CD133, an increased efflux of Hoechst-33342 and positive staining for Oct4, Sox2 and Nanog. Furthermore, the isolated CD133+ cells demonstrated an increased ability to switch to bleb-rich amoeboid phenotype both under inhibitor's treatment and in 3D collagen gels. Conclusions: Together, our data show a significant correlation between the increased ability of cells to switch between migration modes and their stem-like features, suggesting that migration plasticity is an additional property of stem-like population of fibrosarcoma cells. This combination of features could facilitate both dissemination of these cells to distant locations, and their establishment self-renewal in a new microenvironment, as required for metastasis formation. Significance: These data suggest that migration plasticity is a new feature of cancer stem-like cells that can significantly facilitate their dissemination to a secondary location by allowing them to adapt quickly to challenging microenvironments. Moreover, it complements their resistance to apoptosis and self-renewal potential, thus enabling them not only to disseminate efficiently, but also to survive and colonise new niches.
KW - Arp2/3 complex
KW - actin cytoskeleton
KW - blebs
KW - cell motility
KW - lamellipodia
UR - http://www.scopus.com/inward/record.url?scp=85071270139&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071270139&partnerID=8YFLogxK
U2 - 10.1111/boc.201800078
DO - 10.1111/boc.201800078
M3 - Article
C2 - 31403697
AN - SCOPUS:85071270139
SN - 0248-4900
VL - 111
SP - 245
EP - 261
JO - Biology of the Cell
JF - Biology of the Cell
IS - 10
ER -