Variable exponent Hardy spaces associated with discrete Laplacians on graphs

Víctor Almeida, J. J. Betancor, Alejandro J. Castro Castilla, L. Rodríguez-Mesa

Research output: Contribution to journalArticle

Abstract

In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness
properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.
Original languageEnglish
Number of pages52
JournalScience China Mathematics
DOIs
Publication statusAccepted/In press - Nov 19 2017

Keywords

  • 42B30
  • 42B35
  • 60J10
  • discrete Laplacian
  • graphs
  • Hardy spaces
  • spectral multipliers
  • square functions
  • variable exponent

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Variable exponent Hardy spaces associated with discrete Laplacians on graphs'. Together they form a unique fingerprint.

  • Cite this