### Abstract

properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

Original language | English |
---|---|

Number of pages | 52 |

Journal | Science China Mathematics |

Publication status | Accepted/In press - Nov 19 2017 |

### Fingerprint

### Cite this

*Science China Mathematics*.

**Variable exponent Hardy spaces associated with discrete Laplacians on graphs.** / Almeida, Víctor; Betancor, J. J.; Castro Castilla, Alejandro J.; Rodríguez-Mesa, L.

Research output: Contribution to journal › Article

*Science China Mathematics*.

}

TY - JOUR

T1 - Variable exponent Hardy spaces associated with discrete Laplacians on graphs

AU - Almeida, Víctor

AU - Betancor, J. J.

AU - Castro Castilla, Alejandro J.

AU - Rodríguez-Mesa, L.

PY - 2017/11/19

Y1 - 2017/11/19

N2 - In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

AB - In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

M3 - Article

JO - Science China Mathematics

JF - Science China Mathematics

SN - 1674-7283

ER -