Variable exponent Hardy spaces associated with discrete Laplacians on graphs

Víctor Almeida, J. J. Betancor, Alejandro J. Castro Castilla, L. Rodríguez-Mesa

Research output: Contribution to journalArticle

Abstract

In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness
properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.
Original languageEnglish
Number of pages52
JournalScience China Mathematics
Publication statusAccepted/In press - Nov 19 2017

Fingerprint

Discrete Laplacian
Variable Exponent
Hardy Space
Graph in graph theory
Littlewood-Paley Function
Riesz Transform
Infinite Graphs
Multiplier
Boundedness
Decompose

Cite this

Almeida, V., Betancor, J. J., Castro Castilla, A. J., & Rodríguez-Mesa, L. (Accepted/In press). Variable exponent Hardy spaces associated with discrete Laplacians on graphs. Science China Mathematics.

Variable exponent Hardy spaces associated with discrete Laplacians on graphs. / Almeida, Víctor; Betancor, J. J.; Castro Castilla, Alejandro J.; Rodríguez-Mesa, L.

In: Science China Mathematics, 19.11.2017.

Research output: Contribution to journalArticle

Almeida, V, Betancor, JJ, Castro Castilla, AJ & Rodríguez-Mesa, L 2017, 'Variable exponent Hardy spaces associated with discrete Laplacians on graphs', Science China Mathematics.
Almeida V, Betancor JJ, Castro Castilla AJ, Rodríguez-Mesa L. Variable exponent Hardy spaces associated with discrete Laplacians on graphs. Science China Mathematics. 2017 Nov 19.
Almeida, Víctor ; Betancor, J. J. ; Castro Castilla, Alejandro J. ; Rodríguez-Mesa, L. / Variable exponent Hardy spaces associated with discrete Laplacians on graphs. In: Science China Mathematics. 2017.
@article{f34740e477cc4b2b8c0216218505028f,
title = "Variable exponent Hardy spaces associated with discrete Laplacians on graphs",
abstract = "In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.",
author = "V{\'i}ctor Almeida and Betancor, {J. J.} and {Castro Castilla}, {Alejandro J.} and L. Rodr{\'i}guez-Mesa",
year = "2017",
month = "11",
day = "19",
language = "English",
journal = "Science China Mathematics",
issn = "1674-7283",
publisher = "Science in China Press",

}

TY - JOUR

T1 - Variable exponent Hardy spaces associated with discrete Laplacians on graphs

AU - Almeida, Víctor

AU - Betancor, J. J.

AU - Castro Castilla, Alejandro J.

AU - Rodríguez-Mesa, L.

PY - 2017/11/19

Y1 - 2017/11/19

N2 - In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

AB - In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

M3 - Article

JO - Science China Mathematics

JF - Science China Mathematics

SN - 1674-7283

ER -