Variable exponent Hardy spaces associated with discrete Laplacians on graphs

Víctor Almeida, Jorge J. Betancor, Alejandro J. Castro Castilla, Lourdes Rodríguez-Mesa

Research output: Contribution to journalArticle

Abstract

In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

Original languageEnglish
JournalScience China Mathematics
DOIs
Publication statusAccepted/In press - Jan 1 2018

Fingerprint

Discrete Laplacian
Variable Exponent
Hardy Space
Graph in graph theory
Littlewood-Paley Function
Riesz Transform
Infinite Graphs
Multiplier
Boundedness
Decompose

Keywords

  • 42B30
  • 42B35
  • 60J10
  • discrete Laplacian
  • graphs
  • Hardy spaces
  • spectral multipliers
  • square functions
  • variable exponent

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Variable exponent Hardy spaces associated with discrete Laplacians on graphs. / Almeida, Víctor; Betancor, Jorge J.; Castro Castilla, Alejandro J.; Rodríguez-Mesa, Lourdes.

In: Science China Mathematics, 01.01.2018.

Research output: Contribution to journalArticle

@article{1c72aac5cd31404fa6b8df40914935d6,
title = "Variable exponent Hardy spaces associated with discrete Laplacians on graphs",
abstract = "In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.",
keywords = "42B30, 42B35, 60J10, discrete Laplacian, graphs, Hardy spaces, spectral multipliers, square functions, variable exponent",
author = "V{\'i}ctor Almeida and Betancor, {Jorge J.} and {Castro Castilla}, {Alejandro J.} and Lourdes Rodr{\'i}guez-Mesa",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/s11425-017-9200-2",
language = "English",
journal = "Science China Mathematics",
issn = "1674-7283",
publisher = "Science in China Press",

}

TY - JOUR

T1 - Variable exponent Hardy spaces associated with discrete Laplacians on graphs

AU - Almeida, Víctor

AU - Betancor, Jorge J.

AU - Castro Castilla, Alejandro J.

AU - Rodríguez-Mesa, Lourdes

PY - 2018/1/1

Y1 - 2018/1/1

N2 - In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

AB - In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.

KW - 42B30

KW - 42B35

KW - 60J10

KW - discrete Laplacian

KW - graphs

KW - Hardy spaces

KW - spectral multipliers

KW - square functions

KW - variable exponent

UR - http://www.scopus.com/inward/record.url?scp=85053401246&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053401246&partnerID=8YFLogxK

U2 - 10.1007/s11425-017-9200-2

DO - 10.1007/s11425-017-9200-2

M3 - Article

AN - SCOPUS:85053401246

JO - Science China Mathematics

JF - Science China Mathematics

SN - 1674-7283

ER -