Generalized fractional Dirac type operators

Joel E. Restrepo, Michael Ruzhansky, Durvudkhan Suragan

Результат исследованийрецензирование

1 Цитирования (Scopus)

Аннотация

We introduce a class of fractional Dirac type operators with time variable coefficients by means of a Witt basis, the Djrbashian–Caputo fractional derivative and the fractional Laplacian, both operators defined with respect to some given functions. Direct and inverse fractional Cauchy type problems are studied for the introduced operators. We give explicit solutions of the considered fractional Cauchy type problems. We also use a recent method to recover a variable coefficient solution of some inverse fractional wave and heat type equations. Illustrative examples are provided.

Язык оригиналаEnglish
Страницы (с-по)2720-2756
Число страниц37
ЖурналFractional Calculus and Applied Analysis
Том26
Номер выпуска6
DOI
СостояниеPublished - дек. 2023

Финансирование

СпонсорыНомер спонсора
Ghent University Special Research Fund
Nazarbayev University20122022CRP1601
Engineering and Physical Sciences Research CouncilG011522N, EP/R003025/2
Fonds Wetenschappelijk Onderzoek (FWO)
Ministry of Education and Science of the Republic of KazakhstanBR21882172
Bijzonder Onderzoeksfonds UGent01M01021

    ASJC Scopus subject areas

    • Analysis
    • Applied Mathematics

    Fingerprint

    Подробные сведения о темах исследования «Generalized fractional Dirac type operators». Вместе они формируют уникальный семантический отпечаток (fingerprint).

    Цитировать